Are your formation water analyses representative?

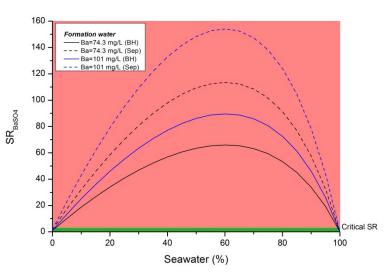
Ross McCartney

Oilfield Water Services Limited

LPS Reservoir Fluids Seminar, Burlington House, London, 11 December 2014

London Petrophysical Society

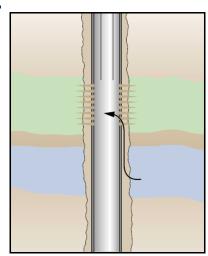
Reported analyses


pH Conductivity (mmho/cm) at 25º C	6.02 28.4
Total Dissolved Solids (mg/L), NaCl equivalent	16500
Resistivity (ohm.m) at 25 ^º C	0.352

Parameter	Symbol	mg/L	me/L
odium	Na	4900	213
Potassium	К	100	3
Calcium	Ca	1650	82.3
lagnesium	Mg	27	2.2
Barium	Ba	28	0.41
Strontium	Sr	37	0.84
ron	Fe	6.3	0.23
Chloride	CI	10840	306
Sulphate	SO ₄	24	0.5
Carbonate alkalinity as CO ₃	CO ₃	NIL	
Bicarbonate alkalinity as HČO ₃	HCO ₃	741	12.1
ree Carbon Dioxide	CO ₂	1160	
lydrogen Sulphide	H ₂ S	1.1	
Cations		6748	302
nions		11606	318
Sum of lons		18354	620
_			
6 Variation (anions over cations)			2.7

 Analyses may be used directly during field development planning:

- > Calculation of OIIP (R_w).
- Hydrate predictions and inhibitor testing (total salinity).
- Identifying emulsion risks (total salinity).
- Scale predictions and inhibitor testing (major ions, pH)
- Corrosion predictions, material selection, and inhibitor testing (major ions, pH).
- > Souring predictions (organic acids, NH_4 , PO_4 , H_2S , SRB).
- Compartmentalisation studies (⁸⁷Sr/⁸⁶Sr).
- Quality control for new formation water analyses (all constituents).



Who will use these formation water analyses?

- Analyses also used during production:
 - Identification and tracking of changes in formation water compositions.
 - Identification of areas of the reservoir with better or worse connectivity.
 - Identification of the source of water production (e.g. casing leak, particular reservoir zones, etc).
 - Produced water allocation.
 - Identification and tracking of injection water breakthrough.
 - Quantification and tracking of injection water fraction.
 - Quality control for new formation water analyses (all constituents).
 - Analyses used by a wide range of planning and operational functions.

Reported analyses

Resistivity (ohm.m) at 25 ^º C		into	
Parameter	symbol Symbol Na K Ca Mg Ba Sr Fe inner	mg/L	me/L
Sodium	Na	4900	213
Potassium	K	100	3
Calcium	Ca	1650	82.3
Magnesium	Ma	27	2.2
Barium	Ba	28	0.41
Strontium	Sr	37	0.84
ron	Fe	6.3	0.23
Chloride		10840	306
Sulphate		24	0.5
Carbonate alkalinity as CO ₃		NIL	
Bicarbonate alkalinity as HCO ₃		741	12.1
Free Carbon Dioxide		1160	
Hydrogen Sulphide	H ₂ S	1.1	
Cations		6748	302
Anions		11606	318
Sum of Ions		18354	620

- Potential implications:
 - Incorrect or sub-optimal decisions.
 - Higher costs.
 - Reduced or lost production.
- For example, potential scale management implications:
 - Failure to predict scale occurrence requirement for retrofitting scale mitigation capability.
 - Incorrect selection of injection water more scale to mitigate than for alternative injection waters.
 - Selection of unsuitable or non-optimal scale inhibitors – ineffective or inefficient scale management.

Due diligence

- To avoid these pitfalls, but to also still have a formation water composition to work with, it is important to know:
 - Are the reported analyses representative or not?
 - If not, can representative data be estimated?
 - What are the uncertainties associated with the final 'recommended' formation water composition?
- The latter is particularly important and these uncertainties need to be considered when using the composition during field planning and operation.

Outline

- How to determine whether the analyses are representative of the sampling location:
 - Identifying quality risks.
 - Assessing these risks.
- What if they are not representative?
 - Estimating representative formation water compositions.
 - Assessing the quality of estimated compositions.
- Are they representative of all field locations?
- Conclusions

How are formation water samples obtained?

- Field appraisal:
 - Formation testing (e.g. MDT, RCI, etc).
 - DSTs (e.g. wellhead, test separator, wireline sampling).
 - Production tests (wellhead, test separator).
 - Core (centrifugation, residual salt analysis).
- Production:
 - Production wells (wellhead, test separator).

Post-collection sample handling

- This may or may not involve (depending on procedures adopted):
 - Sample re-conditioning.
 - Sample transfer.
 - Sample preservation.
 - Sample transportation.
 - Sample storage.

Analysis of formation water samples

- Location:
 - Downhole probe (e.g. pH, R_w)
 - Field analyses (e.g. at the rig floor, platform).
 - Laboratory analyses.
- Common measurements:
 - 'Physical parameters': Appearance, total dissolved and suspended solids, specific gravity/density, resistivity/conductivity, pH.
 - Cations: Na, K, Mg, Ca, Sr, Ba, Fe.
 - > Anions: CI, SO₄, total alkalinity, HCO₃ alkalinity.
- Less common measurements:
 - > Minor ions (B, Li, Mn, Br, PO_4 , NO_3 , HS, etc), organic acids.
 - ➢ Isotopes (⁸⁷Sr/⁸⁶Sr, stable oxygen and hydrogen isotopes).
 - Flashed gases (GWR, gas composition)
 - High pressure pH.

Identify the quality risks


- Factors that may cause the reported water sample analyses to differ from the *in situ* formation water composition.
- These may arise during the drilling of the sampled zone (e.g. mud contamination) right through to reporting of the analyses (e.g. reporting errors).
- They may include equipment, procedures, events and processes to which the samples are exposed.
- They can be identified by:
 - Knowing <u>what</u> factors can affect formation water compositions and <u>how</u> these factors can affect them.
 - Reviewing available drilling, sampling and analysis documentation to identify which factors might have affected the formation water samples and analyses of interest.

Common quality risks

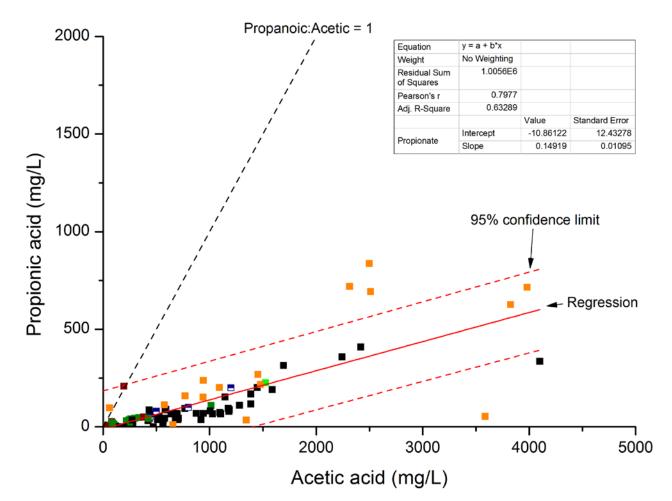
- Drilling/completion:
 - > Mud contamination, completion fluid contamination.
- Production:
 - Condensation, evaporation
- Sampling/sample transfer/storage:
 - Cross-contamination.
 - Pressure reduction (before and after sampling), gas separation, cooling.
 - Contact with air.
- Sample preservation:
 - None used, use of incorrect preservatives.
- Sample analysis:
 - Random errors, bias errors, use of 'proxy' methods, use of inappropriate methods, misunderstood analyses, reporting errors.

Can quality risks be avoided?

- With careful planning and implementation the number of quality risks can be reduced and their impact minimised. But:
 - > Careful planning is not always undertaken.
 - Compromises have to be made.
 - Some factors our outside of our control.
 - Mistakes are made.
- It is common for one or more quality risks to affect the representativeness of formation water analyses.

- Is there evidence, or is it likely, that the quality risks have significantly affected the compositions of the samples?
- This tells us whether the water analyses are likely (or not likely) to be representative of in-situ formation water compositions.
- Where the water analyses are not representative, what methods could be used to estimate them?

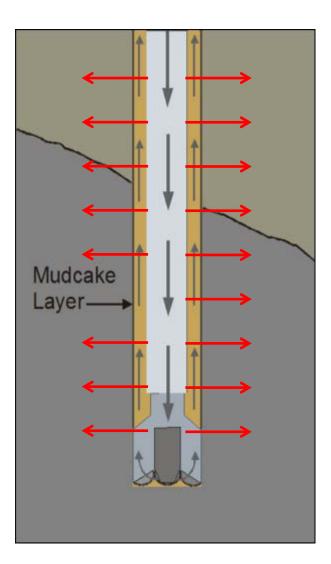
Example – the wrong preservative


- Representative propanoic acid analyses required to determine the frequency of fresh MEG shipments to a proposed offshore development with MEG plant.
- Identifying the quality risk:
 - Review of procedures showed sample incorrectly preserved with glutaraldehyde.
 - Quality risk glutaraldehyde can interfere with propanoic acid analysis.
- Evidence of impact:
 - Compared with typical formation waters, propanoic acid concentration confirmed as high and anomalous (higher than acetic acid).
 - \succ High –ve ion balance.
 - Subsequent laboratory tests confirmed glutaraldehyde caused bias.

Volatile Fatty Acids
Concentration (ppm)
< 25
325
1582
< 10
11
< 10

Valatila Eatty Aaida

Example – the wrong preservative


- How was the likely propanoic acid concentration estimated?
- From the acetic acid analysis and typical acetic acid/propanoic acid ratios in formation waters (~10:1).

Example - mud filtrate contamination

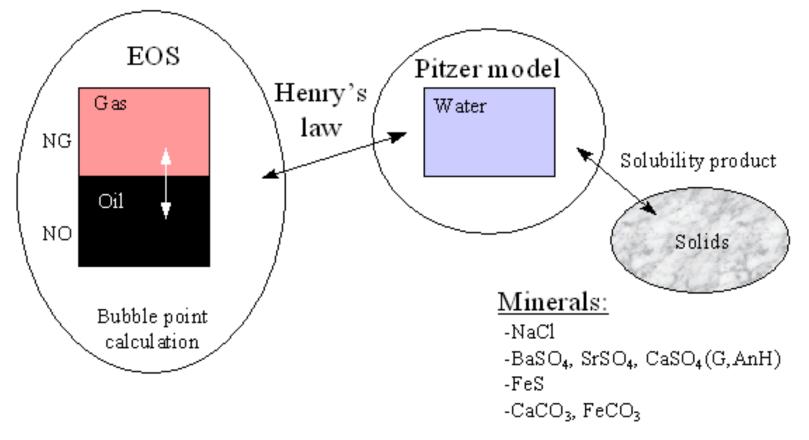
- Representative Ba, Ca, SO₄ required for scale management planning.
- Identifying the risk:
 - Well drilled with KCl water-based mud with NaSCN tracer.
 - Formation water samples subsequently obtained via formation testing.
 - Quality risk mud filtrate contamination of samples.
- Evidence of impact:
 - Presence of SCN in the water samples confirmed mud filtrate contamination.

Example - mud filtrate contamination

- Reactive transport modelling undertaken to simulate mud filtrate invasion, mixing with formation water, reactions and subsequent pumping out of contaminated formation waters.
- This showed that some ions in the water sample (e.g. Ba, Ca, SO₄) likely to be affected by BaSO₄ precipitation and ion exchange in the reservoir.
- By comparing the water sample K analyses with model results, it was possible to demonstrate that ion exchange effects in the sampled zone were negligible (i.e. the zone had very low clay content and low CEC).

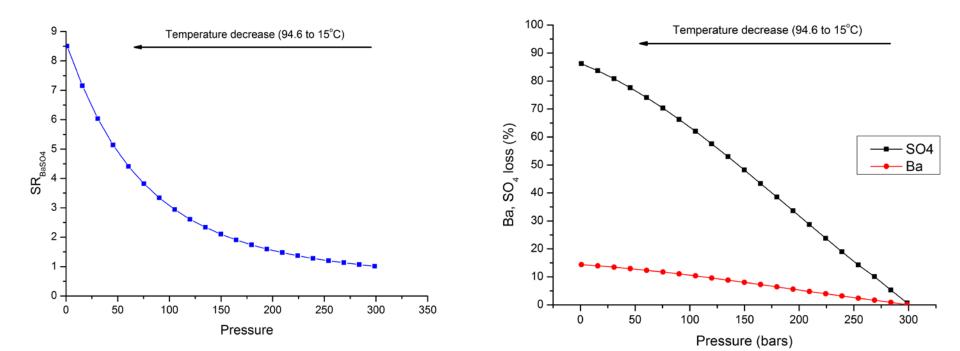
• Ca:

- Very low clay means formation water Ca can be estimated via linear regression of Ca and SCN analyses.
- If ion exchange effects had been significant, it would have been necessary to use the RT model results to estimated formation water Ca concentrations.

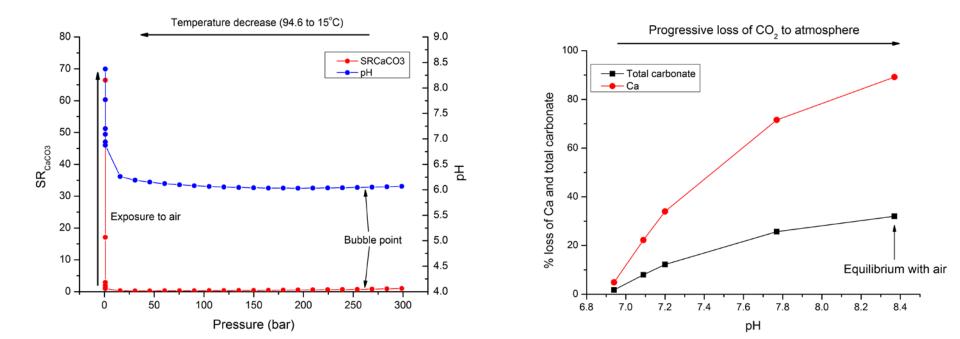

• Ba, SO₄:

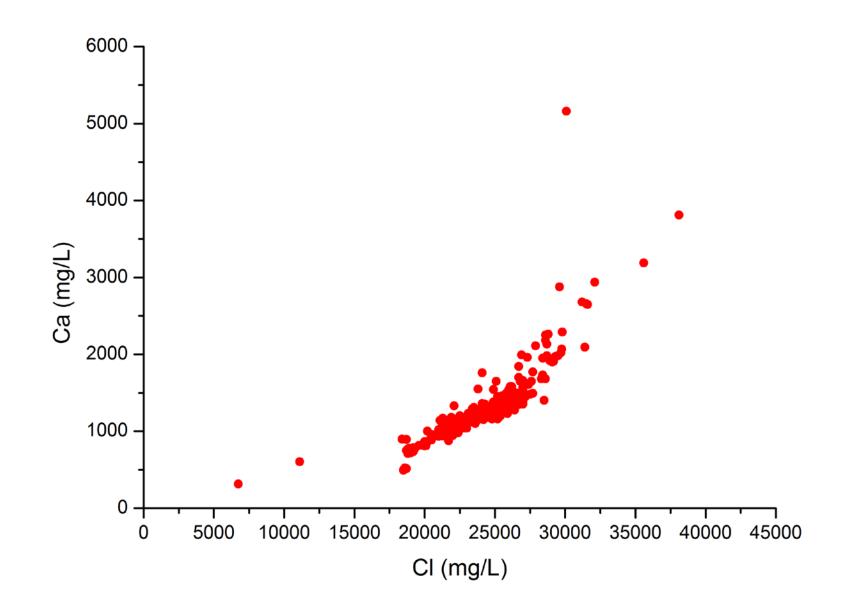
- Due to precipitation of BaSO₄, linear regression could not be used to estimate formation water Ba and SO₄ concentrations.
- But, these could be estimated using scale prediction software to correct for BaSO₄ precipitation (e.g. MultiScale™).
- If ion exchange effects had been significant, it would have been necessary to use both the RT model results and scale prediction software to estimate formation water Ba and SO₄ concentrations.

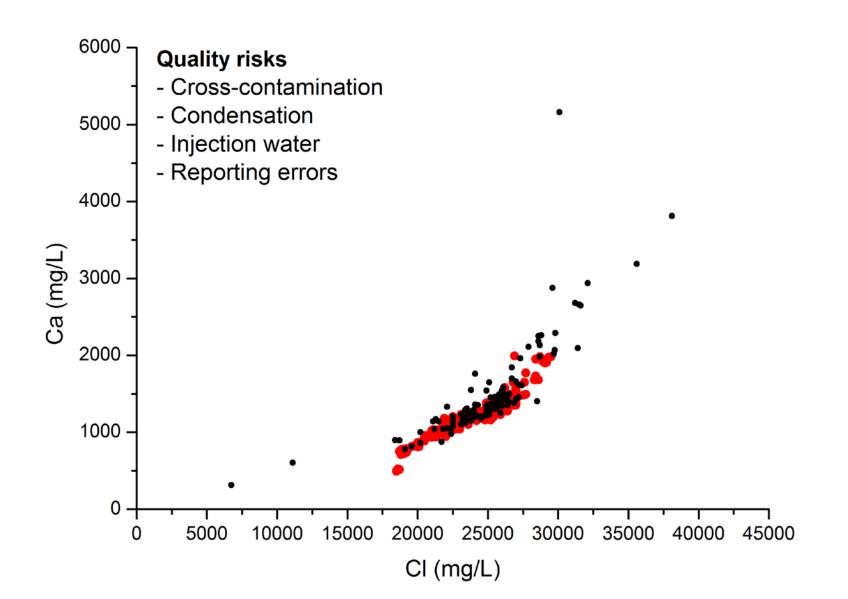
MultiScale™

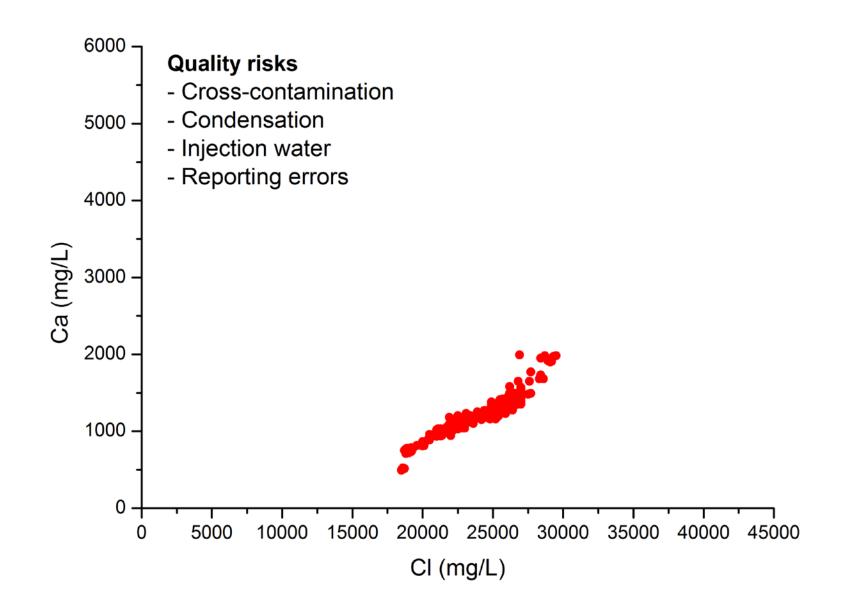

- Water-gas-oil equilibrium model.
- Capable of predicting scale risk (saturation ratios, scale mass) at fixed P-T, along a P-T profile, or when waters are mixed.

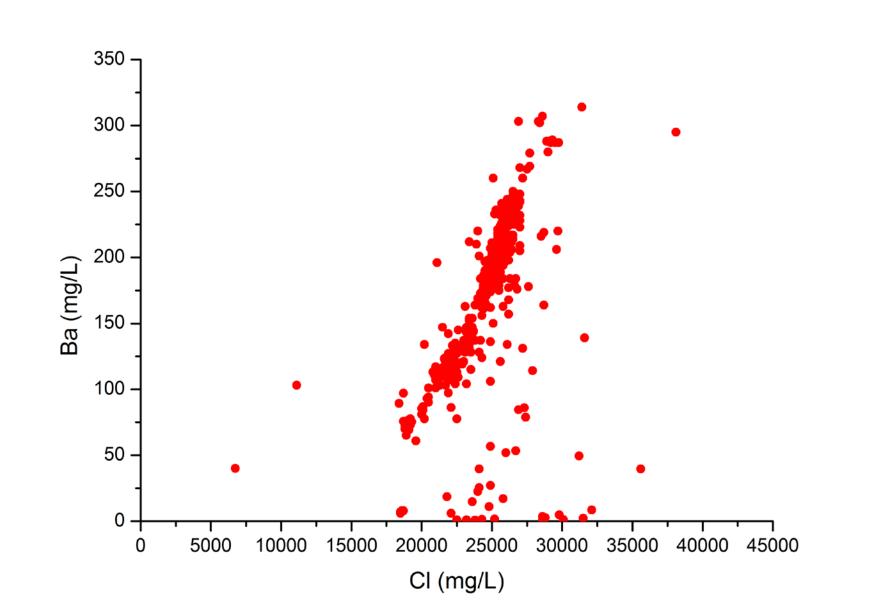
Example - sample cooling/de-pressurisation

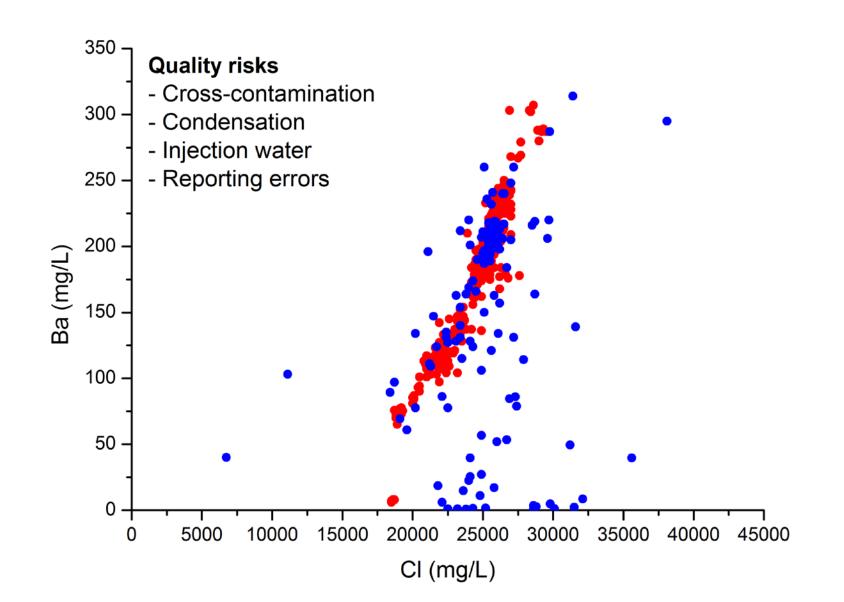

- Formation testing sample, decanted at the well site.
- Quality risk BaSO₄ precipitation before sample analysis.
- MultiScale[™] modelling showed that this could modify the formation water composition but not sufficiently to affect scale management planning.

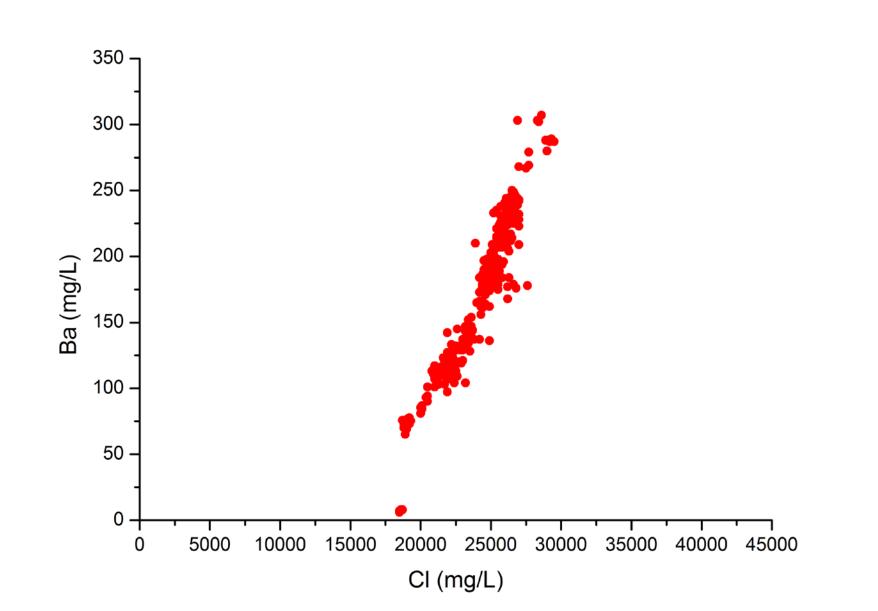

Example - sample cooling/de-pressurisation

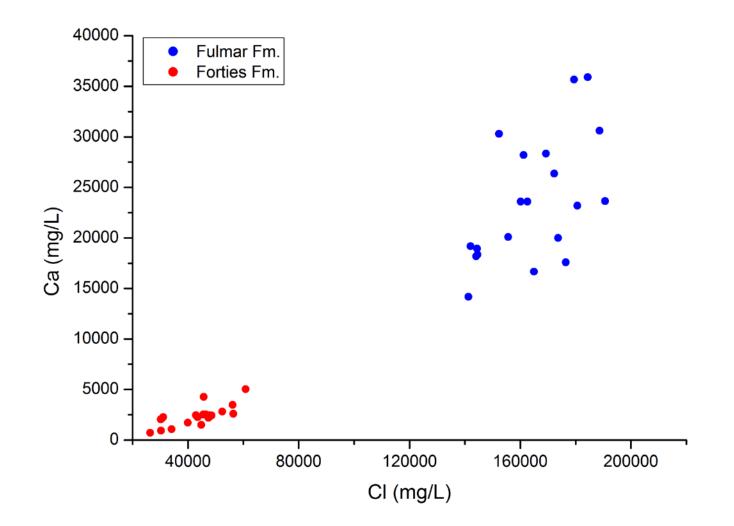

- Quality risk CaCO₃ precipitation before sample analysis.
- MultiScale[™] modelling showed that this could cause significant change in pH and Ca (89%) and HCO₃ (32%) loss from the sample on decanting.
- Important for scale management planning but difficult to correct.









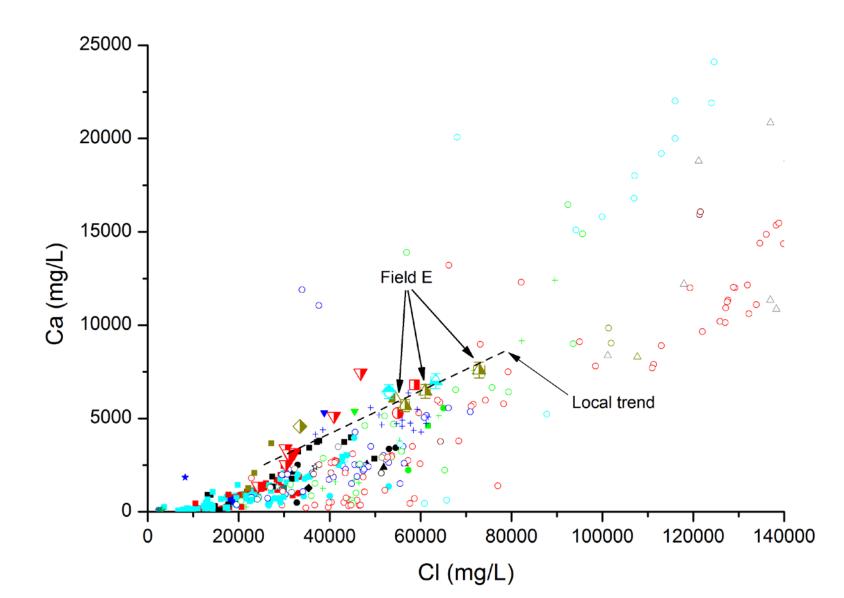

Produced formation water samples

- 'Cleaned-up' data subsequently used:
 - > To identify areas of good and poor connectivity.
 - As a baseline for more accurately identifying injection water breakthrough.
- Benefitting:
 - Reservoir management (providing constraints on the reservoir model).
 - Scale management.

Use of analogue formation water compositions

• Possible sometimes – degree of constraint can vary.....

Building confidence in estimated compositions


- Checking ion balances can support validity of estimated major ion concentrations.
- Comparison with measured pressure gradients ditto.
- Comparison with analogue formation water data can support validity of estimates of all ion concentrations.

Comparison with formation pressures

- Where pressure data have been obtained, a pressure gradient can be calculated.
- A theoretical pressure gradient can also be calculated from the estimated formation water salinity (e.g. obtained from mud-contaminated samples).
- Where the latter overlays the former, this indicates that the estimated salinity is reasonable.
- But, this is not always a sensitive technique need good pressure data.

Representative at all field locations?

- Differences in composition can occur between wells, between reservoir zones, between the water-leg and the hydrocarbon-leg, and within the hydrocarbon-leg.
- Prediction at other locations is challenging:
 - > Is the aquifer well connected, active, or compartmentalised?
 - > Are the reservoir zones connected?
 - When were hydrocarbons emplaced?
 - Was the aquifer connected or compartmentalised during this period and was the aquifer active?
- But, we can comment on the risk that differences may be present. For example:
 - Well connected, active aquifer, recent and fast hydrocarbon emplacement – lower risk between wells and between water-leg and hydrocarbon-leg.
 - Compartmentalised aquifer higher risk between wells in aquifer.

- Try to obtain good quality formation water samples and analyses (this is not always possible).
- After analyses have been obtained, determine whether they are representative by:
 - Identifying the quality risks.
 - Assessing the potential impact of these risks on the analyses.
- Where the impact is likely to be significant, try to estimate representative compositions and try to confirm that the estimates are reasonable.
- To minimise the risks when using the 'final' compositions, make users aware of any uncertainties associated with the compositions.
- Do not assume that one composition will be valid for all locations across the field assess the risk.
- Do not assume that the formation water composition from an adjacent field will be the same as that in your field assess the risk.