Formation water samples: Are you missing a trick?

Should core-derived water analyses be part of the standard package of acquired data on new developments?

Ross McCartney Oilfield Water Services Limited

Outline

- Is one water sample location enough?
- Opportunities provided by core:
 - Centrifuged core.
 - Residual Salt Analysis.
 - Dean-Stark crush and leach.
- Field examples.
- Conclusions.

Water sampling – typical scenario

- Common to collect one water sample from the water-leg during appraisal:
 - DST, production test.
 - Formation testing (MDT, RCI, etc).
- Used during field development planning
 - Calculation of OIIP (R_w).

- Scale predictions and inhibitor testing (major ions, pH)
- Corrosion predictions, material selection, and inhibitor testing (major ions, pH).
- $^{\circ}$ Souring predictions (organic acids, NH₄, PO₄, H₂S, SRB).
- Hydrate predictions and inhibitor testing (total salinity).
- Identifying emulsion risks (total salinity).

Water sampling – typical scenario

- Also used during production:
 - Baseline data for monitoring (scale, corrosion, hydrate, emulsions, souring).
 - Source of formation water (e.g. identifying casing leaks, identity of water-producing zones, etc).
 - Identification of injection water breakthrough.
 - Quantification of injection water fraction.
- Formation water analyses and associated results used by a wide range of planning and operational functions (water, scale, corrosion management, etc).

Risks and limitations

- No reliable formation water composition obtained:
 - It may not be possible to collect samples (e.g. tight formation, inaccessible well, tool failure, etc).
 - Sample quality might be very poor (e.g. mud contamination - especially with WBM, no mud tracer).
 - May be necessary to estimate composition (e.g. analogues)
- Formation water compositions may vary across the field:
 - Within and between formations/reservoir units (e.g. Veslefrikk, Brage, Varg).
 - Within and between hydrocarbon-leg and water-leg (e.g. Forties, Alba).

Implications

- Incorrect formation water compositions may be used, for example:
 - $\circ~$ Use of incorrect R_w for the hydrocarbon-leg incorrect OIIP.
 - Formation water used in scale predictions may not be representative of much of the field but might be used in scale predictions – incorrect scale risk.
- Previously, risks have been accepted but less so with the increasing development of HT/HP and subsea fields:
 - Economics might be marginal if the OIIP or the number of squeeze treatments required are incorrect, will the economic decisions be incorrect?
 - Retrospective action to solve unforeseen problems may be very expensive or they may not be possible at all (operational constraints).
- Opportunities to use 'multiple data' applications will be missed, e.g.
 - ⁸⁷Sr/⁸⁶Sr compartmentalisation studies aids development planning.
 - Produced water allocation studies aids reservoir management.
- Solution obtain more data from both water-leg and hydrocarbonleg.

Core-derived data - advantages

- Multiple sample locations:
 - Sandstone or carbonates.
 - Water-leg, transition zone, hydrocarbon-leg.
- Low cost:
 - For sub-sampling/analysis only core already obtained for other purposes.
- Reasonably good quality (usable) data where preferred protocols followed:
 - OBM (±tracer), low invasion coring techniques, ±plugging and preservation at rig site.

Core-derived data - disadvantages

- Sample locations:
 - Data limited to core locations (e.g. core might not be cut in the waterleg).
 - Limited <u>measured data</u> in hydrocarbon-leg (but potential for estimated data).
- Sample quality:
 - Can be poor if it is not possible to follow preferred protocols.
 - Mud Aqueous Phase (MAP) contamination greatest quality risk can correct for this if contamination is low.
 - De-pressurisation (gas loss) and cooling of core:
 - Alters pH, HCO₃ (can correct for this).
 - Might also get evaporation (will not affect ratios but cannot correct concentrations for this).
- Core plug damage.

Core-derived data

- Several methods for obtaining water analyses from core - some of the more useful types:
 - Centrifuged core. API RP40 (1998), Doorenbos et al. (2001).
 - Residual Salt Analysis. Mearns and McBride (1999), McCartney et al. (2010).
 - Dean-Stark crush and leach. API RP40 (1998), Pan (2005), Clinch et al. (2010).

Comparison of techniques

Method	Centrifuged core	Dean-Stark crush/leach	Residual salt analysis
Drilling Mud	WBM or OBM (OBM preferred)	OBM	WBM or OBM (OBM preferred)
Mud tracer	Deuterium, tritium	Deuterium, tritium	No
Mud sample analyses	Yes, tracer, other analyses	Yes, tracer, other analyses	No
Low invasion coring	Yes	Yes	Yes
Preserved plug samples	Yes (rig site)	Yes (rig site)	No
Water extraction	Ultracentrifugation	Dean-Stark measurement, then crush and leaching with distilled water	Crush and leach with distilled water
Analyses	Cations, anions, organic acids, R _w , tracer, density, ⁸⁷ Sr/ ⁸⁶ Sr	Cl, ⁸⁷ Sr/ ⁸⁶ Sr Other analyses optional (Na, Ca, K, etc)	Cl, ⁸⁷ Sr/ ⁸⁶ Sr Other analyses optional (Na, Ca, K, etc)
Calculated composition?	No	⁸⁷ Sr/ ⁸⁶ Sr and ion ratios – No. Ion concentrations – Yes (using measured Dean–Stark water mass)	⁸⁷ Sr/ ⁸⁶ Sr and ion ratios - No. Ion concentrations - Yes (using log porosity, S _w)
Mud contamination correction possible?	Yes, if required	Yes, if required	No

Centrifuged core

Advantages:

- Data for wide range of constituents.
- Data can be obtained wherever water can be mobilised via ultracentrifugation (where centrifugal forces overcome capillary forces) – water-leg, transition zone, deeper hydrocarbon-leg.
- Corrections for MAP contamination can be applied to data.
- Disadvantages:
 - Volume of water may be too small for complete analysis or duplicate analysis (e.g. low porosity).
 - High sample dilutions (limits of detection raised).
 - Extraction of small water volumes greater potential for contamination.

Dean-Stark crush and leach

- Advantages:
 - Data can be obtained from wide-range of locations including at locations of low S_w (water-leg, transition zone, hydrocarbon-leg).
 - All relevant measurements undertaken on the same sample less uncertainty.
 - Corrections for MAP contamination can be applied to CI data.
 - Potential for 'bonus' data.
- Disadvantages:
 - Limited 'measured' data of good quality (CI, ⁸⁷Sr/⁸⁶Sr) data for other constituents is estimated or if measured, may be of uncertain quality.
 - Cl concentrations unlikely to be valid in evaporite-bearing rocks (e.g. halite).
 - Uncertainties on CI increase as S_w decreases.
 - If water loss from core occurs, CI erroneously high (e.g. displacement by mud contamination, gas expansion, evaporation into expanding gas, etc).

Residual Salt Analysis (RSA)

Advantages:

- Unpreserved core data can be obtained retrospectively.
- Data can be obtained from wide-range of locations (water-leg, transition zone, hydrocarbon-leg).
- Relatively immune to MAP contamination where formation water Sr concentrations are high (e.g. good data can be obtained even with up to 50% contamination).
- Potential for 'bonus' data.

Disadvantages:

- Cannot undertake MAP contamination corrections need to identify high risk samples (e.g. high porosity, high K/Na) and avoid them.
- Concentrations of other ions need to be calculated using logderived porosity and S_w- adds to uncertainty.
- Data for concentrations or ratios of other constituents can be of uncertain quality (e.g. reactions during leaching, etc).

Summary

- Whilst data is not perfect usable data can be obtained given planning, correct protocols and the right subsurface conditions.
- Centrifuge core samples provide the best quality and range of data (constituents) but may be location limited.
- D-S crush and leach samples and RSA samples provide the widest range of locations, provide good CI and ⁸⁷Sr/⁸⁶Sr data, and may provide 'bonus' data for other ions.
- RSA samples can be taken from unpreserved core.
- All have something to offer and there are potential benefits to obtaining all these data and water samples.
- Compared with the collection of a single data set, integration of multiple data sets can result in more data (with quality information) from more locations.

Examples of potential use of integrated data sets

Examples of potential use of integrated data sets

Field examples

- Numerous examples in the literature typically use corederived analyses for:
 - Determining R_w in the hydrocarbon-leg for OIIP calculation centrifuged core, D-S crush and leach.
 - Identifying variations of ⁸⁷Sr/⁸⁶Sr within the water-leg and hydrocarbon-leg for compartmentalisation studies - RSA.
- Following examples are 'different'.....

Field example A (gas) – centrifuged core data

- During PLT CaCO₃ scale detected at perforations – but why? Produced water (PW) – low rate, low salinity, no scale risk.
- Centrifuge core variable formation water (FW) composition in hydrocarbonleg. Distinctive variation of Na/Cl v Cl.
- Na/CI and CI content of PW interpreted as being mixture of hydrocarbon-leg FW (~5-11 g/L CI) and condensation water.

Field example A (gas) – centrifuged core data

- PVT simulations confirmed condensation in the shallower sections of the well.
- Rate of FW production estimated from FW and PW CI content and PW rate.
- FW composition estimated from centrifuged core data with similar CI content.
- Scale predictions under these conditions CaCO₃ expected at perforations - evaporation of FW as it entered the well.
- Benefit scale management.

Field example B (oil) – RSA data

- Salt diapir nearby.
- High variation in aquifer formation water salinity (MDT, produced).
- Uncertainties over S_w.
- Correlation between R_w and ⁸⁷Sr/⁸⁶Sr in water-leg formation water samples.

Field example B (oil) – RSA data

- ⁸⁷Sr/⁸⁶Sr RSA data available for many wells.
- Oil-leg and water-leg ⁸⁷Sr/⁸⁶Sr RSA data consistent in different areas of the field and show consistent trends with depth.
- Concluded that aquifer R_w-⁸⁷Sr/⁸⁶Sr correlation likely to be valid for the oil-leg too.
- Correlation used to estimate R_w in the oil-leg at each location where ⁸⁷Sr/⁸⁶Sr RSA data available.
- Resulted in a more detailed understanding of R_w variation in the oil-leg and much improved S_w distribution.
- Benefits field depletion planning.

Field examples – Heron Field – RSA data

 Webb and Kuhn, 2004; RSA (Na, CI, Na/CI, Mg/Ca, etc) and water samples show increase in FW salinity with depth in oil-leg and into aquifer (up to 350 g/L TDS).

Field examples – Heron Field – RSA data

- Risk of halite scale deposition if high salinity aquifer brine produced so downhole low sulphate seawater 'wash water' facility was installed and operated from start of production.
- Produced water contained a mixture of wash water, condensation water and formation water (but from where?).
- Using RSA data and produced water analyses, multivariate analysis showed the formation water was from oil-leg (not aquifer), rate being ~100bbl/d.
- Under these conditions no halite scale risk.
- Discontinued wash water injection into several wells.
- No subsequent evidence for halite precipitation, increased production, reduced costs, simpler scale management.

Conclusions

- Collection of 'traditional' formation water samples still recommended on new developments.
- But, obtaining core-derived data provides a complimentary and alternative source of water analyses.
- Key benefits:
 - From unique and multiple locations.
 - Reduces uncertainty on decisions (appraisal, development planning and later in production) compared with those based on use of one formation water (aquifer) location alone.
 - Increases the number of applications of formation water analyses.
 - Low cost.

Conclusions

- There are limitations to the data it maybe that circumstances in some fields will mean that the data cannot be acquired or used.
- But, they should at least be considered for and/or included in data acquisition programmes for future developments....

....don't miss a trick!